Factoring and Simplifying the Expression (a-b)^3 + (b-c)^3 + (c-a)^3 / 9(a-b)(b-c)(c-a)
This expression involves the sum of cubes, which can be factored using a specific formula. Let's break down the steps to simplify it.
1. Factor the Numerator
The numerator of this expression follows the pattern of the sum of cubes factorization:
x³ + y³ = (x + y)(x² - xy + y²)
We can apply this to each term in the numerator:
- (a - b)³ + (b - c)³ = [(a - b) + (b - c)][(a - b)² - (a - b)(b - c) + (b - c)²]
- (c - a)³ = [(c - a) + (c - a)][(c - a)² - (c - a)(c - a) + (c - a)²]
Simplifying further:
- (a - b)³ + (b - c)³ = (a - c)[(a - b)² - (a - b)(b - c) + (b - c)²]
- (c - a)³ = 2(c - a)[(c - a)²]
Now, the numerator becomes:
(a - c)[(a - b)² - (a - b)(b - c) + (b - c)²] + 2(c - a)[(c - a)²]
2. Combine Terms and Simplify
We can factor out (c - a) from both terms in the numerator:
(c - a) [(a - b)² - (a - b)(b - c) + (b - c)² + 2(c - a)²]
Expanding the squared terms and simplifying:
(c - a) [(a² - 2ab + b²) - (ab - ac - b² + bc) + (b² - 2bc + c²) + 2(c² - 2ac + a²)]
(c - a) [3a² + 3b² + 3c² - 3ab - 3ac - 3bc]
Finally, we can factor out 3:
(c - a) * 3(a² + b² + c² - ab - ac - bc)
3. Simplify the Entire Expression
Now, the expression becomes:
(c - a) * 3(a² + b² + c² - ab - ac - bc) / 9(a - b)(b - c)(c - a)
We can cancel out (c - a) and simplify further:
3(a² + b² + c² - ab - ac - bc) / 9(a - b)(b - c)
** (a² + b² + c² - ab - ac - bc) / 3(a - b)(b - c)**
Conclusion
Therefore, the simplified form of the expression (a-b)^3 + (b-c)^3 + (c-a)^3 / 9(a-b)(b-c)(c-a) is (a² + b² + c² - ab - ac - bc) / 3(a - b)(b - c).